Abstract
In the paper, we describe a novel kind of multisymplectic method for three-dimensional (3-D) Maxwell’s equations. Splitting the 3-D Maxwell’s equations into three local one-dimensional (LOD) equations, then applying a pair of symplectic Runge–Kutta methods to discretize each resulting LOD equation, it leads to splitting multisymplectic integrators. We say this kind of schemes to be LOD multisymplectic scheme (LOD-MS). The discrete conservation laws, convergence, dispersive relation, dissipation and stability are investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, non-dissipative, and of first order accuracy in time and second order accuracy in space. As a reduction, we also consider the application of LOD-MS to 2-D Maxwell’s equations. Numerical experiments match the theoretical results well. They illustrate that LOD-MS is not only efficient and simple in coding, but also has almost all the nature of multisymplectic integrators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.