Abstract

A model for two-phase pipeline flow is presented, with evaporation and condensation modelled using a relaxation source term based on statistical rate theory. The model is solved numerically using a Godunov splitting scheme, making it possible to solve the hyperbolic fluid-mechanic equation system and the relaxation term separately. The hyperbolic equation system is solved using the multi-stage (MUSTA) finite volume scheme. The stiff relaxation term is solved using two approaches: one based on the Backward Euler method, and one using a time-asymptotic scheme. The results from these two methods are presented and compared for a CO2 pipeline depressurisation case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.