Abstract
In this paper, the development is presented of a splitting method that can efficiently solve coarse-mesh discretized low-order quasi-diffusion (LOQD) equations. The LOQD problem can reproduce exactly the transport scalar flux and current. To solve the LOQD equations efficiently, a splitting method is proposed. The presented method splits the LOQD problem into two parts: (a) the D problem that captures a significant part of the transport solution in the central parts of assemblies and can be reduced to a diffusion-type equation and (b) the Q problem that accounts for the complicated behavior of the transport solution near assembly boundaries. Independent coarse-mesh discretizations are applied: the D problem equations are approximated by means of a finite element method, whereas the Q problem equations are discretized using a finite volume method. Numerical results demonstrate the efficiency of the methodology presented. This methodology can be used to modify existing diffusion codes for full-core calculations (which already solve a version of the D problem) to account for transport effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.