Abstract

The indefinite least squares (ILS) problem is a generalization of the famous linear least squares problem. It minimizes an indefinite quadratic form with respect to a signature matrix. For this problem, we first propose a simple and effective splitting (SP) method according to its own structure, and prove that it converges for any initial value. Further, to avoid implementing some matrix multiplications and calculating the inverse of large matrix, and considering the acceleration and efficiency of the randomized strategy, we develop two randomized iterative methods on the basis of the SP method as well as the randomized Kaczmarz, Gauss-Seidel and coordinate descent methods, and describe their convergence properties. Numerical results show that our three methods all have quite decent performance in both computing time and iteration numbers compared with the latest iterative method of the ILS problem, and also demonstrate that the two randomized methods indeed yield significant acceleration in terms of computing time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.