Abstract

In this paper, we are concerned with the global pressure formulation of immiscible incompressible two-phase flow between different rock types. We develop for this problem two robust schemes based on domain decomposition (DD) methods and operator-splitting techniques. The first scheme follows a sequential procedure in which the (global) pressure, the saturation-advection and the saturation-diffusion problems are fully decoupled. In this scheme, each problem is treated individually using various DD approaches and specialized numerical methods. The coupling between the different problems is explicit and the time-marching is with no iterations. To adapt to different time scales of problem components and different rock types, the novel scheme uses a multirate time stepping strategy, by taking multiple finer time steps for saturation-advection within one coarse time step for saturation-diffusion and pressure, and permits independent time steps for the advection step in the different rocks. In the second scheme, we review the classical Implicit Pressure–Explicit Saturation (IMPES) method (by decoupling only pressure and saturation) in the context of multirate coupling schemes and nonconforming-in-time DD approaches. For the discretization, the saturation-advection problem is approximated with the explicit Euler method in time, and in space with the cell-centered finite volume method of first order of Godunov type. The saturation-diffusion problem is approximated in time with the implicit Euler method and in space with the mixed finite element method, as in the pressure problem. Finally, in a series of numerical experiments, we investigate the practicality of the proposed schemes, the accuracy-in-time of the multirate and nonconforming time strategies, and compare the convergence of various DD methods within each approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.