Abstract

In this article, we propose the first work that investigates the feasibility of Arabic discourse segmentation into elementary discourse units within the segmented discourse representation theory framework. We first describe our annotation scheme that defines a set of principles to guide the segmentation process. Two corpora have been annotated according to this scheme: elementary school textbooks and newspaper documents extracted from the syntactically annotated Arabic Treebank. Then, we propose a multiclass supervised learning approach that predicts nested units. Our approach uses a combination of punctuation, morphological, lexical, and shallow syntactic features. We investigate how each feature contributes to the learning process. We show that an extensive morphological analysis is crucial to achieve good results in both corpora. In addition, we show that adding chunks does not boost the performance of our system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.