Abstract
Abstract We suggest a series of extremely fast stochastic algorithms based on exact representations we derive in this paper for the first passage time and exit point probability densities, splitting and survival probabilities. We apply the developed algorithms to the following three classes of problems: (1) simulation of epitaxial nanowire growth, (2) diffusion imaging of microstructures, in particular, cathodoluminescence imaging for threading dislocations, and (3) simulation of the annihilation of electrons and holes in vicinity of nonradiative centers and quantum efficiency evaluation. In the last example the Random Walk on Spheres method is used to solve nonlinear diffusion equations, and to more general systems of nonlinear Smoluchowski equations combined with the kinetic Monte Carlo method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.