Abstract

We analyze coherence effects during the splitting of a quasi one-dimensional condensate into two spatially separated ones and their subsequent merging into a single condensate. Our analysis takes into account finite-temperature effects, where phase fluctuations play an important role. We show that, at zero-temperature, the two split condensates can be merged into a single one with a negligible phase difference. By increasing temperature to a finite value below the critical point for condensation ($T_c$), i.e., $0 \le T/T_c < 1$, a considerable enhancement of phase and density fluctuations appears during the process of splitting and merging. Our results show that if the process of splitting and merging is sufficiently adiabatic, the whole process is quite insensitive to phase fluctuations and even at high temperatures, a single condensate can be produced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.