Abstract

It is well known that, under certain conditions, it is possible to split logic programs under stable model semantics, that is, to divide such a program into a number of different “levels”, such that the models of the entire program can be constructed by incrementally constructing models for each level. Similar results exist for other nonmonotonic formalisms, such as auto-epistemic logic and default logic. In this work, we present a general, algebraic splitting theory for logics with a fixpoint semantics. Together with the framework of approximation theory , a general fixpoint theory for arbitrary operators, this gives us a uniform and powerful way of deriving splitting results for each logic with a fixpoint semantics. We demonstrate the usefulness of these results, by generalizing existing results for logic programming, auto-epistemic logic and default logic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.