Abstract

Ultrasonic guided wave (UGW) nondestructive testing suffers from poor signal interpretation accuracy caused by the coherent noise that is related to dispersion, multi-mode and mode conversion. In order to split the L(0,2) UGW from the coherent noise, split-spectrum processing with raised cosine filters of constant frequency-to-bandwidth ratio (FBR-RC-SSP) is proposed. With the advantages of time domain resolution and frequency domain split, FBR-RC-SSP is studied based on time-frequency analysis using the chirplet transform, and the effects of filter parameters on signal-to-noise ratio gain (SNRG) and defect-to-coherent noise gain (DCRG) are explained. The excellent effects of eliminating the coherent noise and improving the signal resolution in FBR-RC-SSP are reported by the validation of synthesized, simulated and experimental UGW signals, of which the average SNRG and DCRG are 22.92% and 23.71% higher than those of traditional SSP using Gaussian filters, and it has the potential to locate and characterize defects in further UGW testing research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call