Abstract

The split-radix approach for computing the discrete Fourier transform (DFT) is extended for the vector-radix fast Fourier transform (FFT) to two and higher dimensions. It is obtained by further splitting the (N/2*N/2) transforms with twiddle factors in the radix (2*2) FFT algorithm. The generalization of this split vector-radix FFT algorithm to higher radices and higher dimensions is also presented. By introducing a general approach for constructing the fast Hartley transform (FHT) from the corresponding FFT, new vector- and split-vector-radix FHT algorithms with the same desirable properties as their FFT counterparts are obtained.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.