Abstract

AbstractWe construct an equivariant coarse homology theory arising from the algebraic $K$-theory of spherical group rings and use this theory to derive split injectivity results for associated assembly maps. On the way, we prove that the fundamental structural theorems for Waldhausen’s algebraic $K$-theory functor carry over to its nonconnective counterpart defined by Blumberg–Gepner–Tabuada.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.