Abstract

BackgroundSplit hand/foot malformation (SHFM) is a group of congenital skeletal disorders which may occur either as an isolated abnormality or in syndromic forms with extra-limb manifestations. Chromosomal micro-duplication or micro-triplication involving 17p13.3 region has been described as the most common cause of split hand/foot malformation with long bone deficiency (SHFLD) in several different Caucasian and Asian populations. Gene dosage effect of the extra copies of BHLHA9 gene at this locus has been implicated in the pathogenesis of SHFLD.Case presentationThe proband was a female child born to non-consanguineous parents. She was referred for genetic evaluation of bilateral asymmetric ectrodactyly involving both hands and right foot along with right tibial hemimelia. The right foot had fixed clubfoot deformity with only 2 toes. The mother had bilateral ectrodactyly involving both hands, but the rest of the upper limbs and both lower limbs were normal. Neither of them had any other congenital malformations or neurodevelopmental abnormalities. Genetic testing for rearrangement of BHLHA9 gene by quantitative polymerase chain reaction confirmed the duplication of the BHLHA9 gene in both the proband and the mother.ConclusionsWe report the first Sri Lankan family with genetic diagnosis of BHLHA9 duplication causing SHFLD. This report along with the previously reported cases corroborate the possible etiopathogenic role of BHLHA9 gene dosage imbalances in SHFM and SHFLD across different populations.

Highlights

  • Split hand/foot malformation (SHFM) is a group of congenital skeletal disorders which may occur either as an isolated abnormality or in syndromic forms with extra-limb manifestations

  • We report the first Sri Lankan family with genetic diagnosis of Basic helix-loop-helix [BHLH] family member A9 (BHLHA9) duplication causing split hand/foot malformation with long bone deficiency (SHFLD)

  • The orthologous gene has been reported to be expressed in the mesenchyme of the developing limb buds in zebrafish and mouse models, the BHLHA9 gene is proposed to regulate human limb development [5]

Read more

Summary

Conclusions

We report the first Sri Lankan family with genetic diagnosis of BHLHA9 duplication causing SHFLD.

Background
Findings
Discussion and conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.