Abstract
The application of spline subdivision schemes to data consisting of convex compact sets, with addition replaced by Minkowski sums of sets, is investigated. These methods generate in the limit set-valued functions, which can be expressed explicitly in terms of linear combinations of integer shifts of B-splines with the initial data as coefficients. The subdivision techniques are used to conclude that these limit set-valued spline functions have shape-preserving properties similar to those of the usual spline functions. This extension of subdivision methods from the scalar setting to the set-valued case has application in the approximate reconstruction of 3-D bodies from finite collections of their parallel cross-sections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Computational and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.