Abstract

Here the stability and convergence results of oqualocation methods providing additional orders of convergence are extended from the special class of pseudodifferential equations with constant coefficient symbols to general classical pseudodifferential equations of strongly and of oddly elliptic type. The analysis exploits localization in the form of frozen coefficients, pseudohomogeneous asymptotic symbol representation of classical pseudodifferential operators, a decisive commutator property of the qualocation projection and requires qualocation rules which provide sufficiently many additional degrees of precision for the numerical integration of smooth remainders. Numerical examples show the predicted high orders of convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.