Abstract

In this article we use linear spline approximation of a non-linear Riemann–Hilbert problem on the unit disk. The boundary condition for the holomorphic function is reformulated as a non-linear singular integral equation A(u) = 0, where A : H 1(Γ) → H 1(Γ) is defined via a Nemytski operator. We approximate A by A n : H 1(Γ) → H 1(Γ) using spline collocation and show that this defines a Fredholm quasi-ruled mapping. Following the results of (A.I. Šnirel'man, The degree of quasi-ruled mapping and a nonlinear Hilbert problem, Math. USSR-Sbornik 18 (1972), pp. 373–396; M.A. Efendiev, On a property of the conjugate integral and a nonlinear Hilbert problem, Soviet Math. Dokl. 35 (1987), pp. 535–539; M.A. Efendiev, W.L. Wendland, Nonlinear Riemann–Hilbert problems for multiply connected domains, Nonlinear Anal. 27 (1996), pp. 37–58; Nonlinear Riemann–Hilbert problems without transversality. Math. Nachr. 183 (1997), pp. 73–89; Nonlinear Riemann–Hilbert problems for doubly connected domains and closed boundary data, Topol. Methods Nonlinear Anal. 17 (2001), pp. 111–124; Nonlinear Riemann–Hilbert problems with Lipschitz, continuous boundary data without transversality, Nonlinear Anal. 47 (2001), pp. 457–466; Nonlinear Riemann–Hilbert problems with Lipschitz-continuous boundary data: Doubly connected domains, Proc. Roy. Soc. London Ser. A 459 (2003), pp. 945–955.), we define a degree of mapping and show the existence of the spline solutions of the fully discrete equations A n (u) = 0, for n large enough. We conclude this article by discussing the solvability of the non-linear collocation method, where we shall need an additional uniform strong ellipticity condition for employing the spline approximation. Dedicated to Ian H. Sloan on the occasion of his 70th birthday.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call