Abstract

The splicing of a bacterial group II subclass B intron B.me.I1 from Bacillus megaterium chromosomes was investigated. RT-PCR and nucleic acid hybridization methods were used to understand the role of the intron-encoded protein (IEP) in the splicing of B.me.I1. An in vivo assay showed that the splicing occurred in the absence of IEP. An in vitro assay showed that B.me.I1 was spliced under conditions similar to those of the intracellular environment with no help from other biological molecules. Because all group II introns previously reported needed IEPs for their splicing in vivo, our results suggest that B.me.I1 is an "actual" self-splicing group II intron. This is also the first report to recognize the existence of group II introns that independently splice mRNA in vivo. The self-splicing of a bacterial intron may support that eukaryotic spliceosomal introns originated in bacterial genomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.