Abstract
Chemical splicing modulators that bind to the spliceosome have provided an attractive avenue for cancer treatment. Splicing modulators induce accumulation and subsequent translation of a subset of intron-retained mRNAs. However, the biological effect of proteins containing translated intron sequences remains unclear. Here, we identify a number of truncated proteins generated upon treatment with the splicing modulator spliceostatin A (SSA) via genome-wide ribosome profiling and bio-orthogonal noncanonical amino acid tagging (BONCAT) mass spectrometry. A subset of these truncated proteins has intrinsically disordered regions, forms insoluble cellular condensates, and triggers the proteotoxic stress response through c-Jun N-terminal kinase (JNK) phosphorylation, thereby inhibiting the mTORC1 pathway. In turn, this reduces global translation. These findings indicate that creating an overburden of condensate-prone proteins derived from introns represses translation and prevents further production of harmful truncated proteins. This mechanism appears to contribute to the antiproliferative and proapoptotic activity of splicing modulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.