Abstract

The traditional approach to annotate alternative splicing is to investigate every splicing variant of the gene in a case-by-case fashion. This approach, while useful, has some serious shortcomings. Recent studies indicate that alternative splicing is more frequent than previously thought and some genes may produce tens of thousands of different transcripts. A list of alternatively spliced variants for such genes would be difficult to build and hard to analyse. Moreover, such a list does not show the relationships between different transcripts and does not show the overall structure of all transcripts. A better approach would be to represent all splicing variants for a given gene in a way that captures the relationships between different splicing variants. We introduce the notion of the splicing graph that is a natural and convenient representation of all splicing variants. The key difference with the existing approaches is that we abandon the linear (sequence) representation of each transcript and replace it with a graph representation where each transcript corresponds to a path in the graph. We further design an algorithm to assemble EST reads into the splicing graph rather than assembling them into each splicing variant in a case-by-case fashion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.