Abstract

SF3B1 is the most commonly mutated RNA splicing factor in cancer1–4, but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here, we integrated pan-cancer splicing analyses with a positive enrichment CRISPR screen to prioritize splicing alterations that promote tumorigenesis. We report that diverse SF3B1 mutations converge on repression of BRD9, a core component of the recently described GLTSCR1/1L-containing non-canonical BAF (ncBAF) chromatin remodeling complex5–7. Mutant SF3B1 recognizes an aberrant deep intronic branchpoint within BRD9, thereby inducing inclusion of an endogenous retroviral element-derived poison exon and BRD9 mRNA degradation. BRD9 depletion causes loss of ncBAF at CTCF-associated loci and promotes melanomagenesis. BRD9 is a potent tumor suppressor in uveal melanoma (UVM), such that correcting BRD9 mis-splicing in SF3B1-mutant cells with antisense oligonucleotides (ASOs) or CRISPR-directed mutagenesis suppresses tumor growth. Our results implicate ncBAF disruption in the diverse cancers carrying SF3B1 mutations and suggest a mechanism-based therapeutic for these malignancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call