Abstract
Phospholipase Cγ2 (PLCγ2) is an important signaling molecule that receives and transmits signals from various cell surface receptors in most hematopoietic lineages. Variants of PLCG2 cause PLCγ2-associated immune dysregulation (PLAID), a family of conditions that are classified by mutational effect. PLAID with cold urticaria (PLAID-CU) is caused by in-frame deletions of PLCG2 that are dominant negative at physiologic temperatures but become spontaneously active at sub-physiologic temperatures. To identify genetic lesions that cause PLAID by combining RNA sequencing of full-length PLCG2 with whole genome sequencing. We studied nine probands with antibody deficiency and a positive evaporative cooling test, together with two known PLAID-CU patients and three healthy subjects. Illumina sequencing was performed on full-length PLCG2 cDNA synthesized from peripheral blood mononuclear cell RNA and whole genome sequencing was used to identify genetic lesions. Novel alternate transcripts were overexpressed in the Plcg2-deficient DT40 cell overexpression system. ERK phosphorylation was quantified by flow cytometry with and without BCR crosslinking. Two probands expressed novel alternative transcripts of PLCG2 with in-frame deletions. Proband 1, expressing PLCG2 without exons 18-19, carried a splice site mutation in intron 19. Proband 2, expressing PLCG2 without exons 19-22, carried a 14kb de novo deletion of PLCG2. DT40 cells overexpressing the exon 18-19 or exon 19-22 deletions failed to phosphorylate ERK in response to BCR crosslinking. In addition to autosomal dominant genomic deletions, de novo deletions and splice site mutations of PLCG2 can also cause PLAID-CU. All of these can be identified by cDNA-based sequencing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.