Abstract
Fabrication of aluminum nitride (AlN) coatings using conventional plasma spraying processes directly has been deemed impossible. It is attributed to the thermal decomposition of the AlN feedstock particles during spraying without a stable melting phase. Using the reactivity of the plasma (reactive plasma spraying: RPS) showed a promising consideration for in situ formation of AlN thermally sprayed coatings. Several AlN-based coatings were fabricated through the RPS of aluminum powders in the N2/H2 plasma. The focus of this study is in discussing the morphology of splat deposition during the nitriding of Al particles. Furthermore, the influence of the feeding rate during the RPS and nitriding of Al powders will be investigated. The nitride content, as well as the unreacted molten Al phase, strongly influences splat deposition and morphology during the RPS of Al. The collected splats can be divided into reacted, partially reacted, and unreacted splats. The reacted splats tend to show a disk or egg-shell shape. The partially reacted mainly had outside nitride shells and an unreacted molten Al part in the center. The unreacted splats tended to show a splash shape. The main controlling factor is the time of the droplet impact on the substrate during the reaction sequence. The particle size and spray distance showed significant effects on the splat formation due to their effect on the nitriding conversion and the melting behavior of the particles during RPS nitriding. The powder feeding rate was investigated through increasing the injection rate and by using a low carrier gas flow rate. Increasing the powder feeding rate significantly improved the coating thickness. However, it suppressed the nitriding conversion of the large Al particles. Thus, with increasing the amount of the powder in the plasma, the Al molten particles are easily aggregated and agglomerate together upon colliding on the substrate with an AlN shell on the surface. This prevents the N2 from having access to all of the aggregated particles. Therefore, the fabricated coatings using large Al particles consist of surface AlN layers and the central parts of AlN and Al composite layers. On the other hand, it was possible to fabricate about 500-μm-thick AlN coatings using fine Al particles of 15 μm and increasing the feeding rate. Using the fine particles improved the nitriding reaction due to the improvement of the surface area (the reaction area). Moreover, the nitriding process of the Al particles with increasing the feeding rate was also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.