Abstract

A novel splat feature classification method is presented with application to retinal hemorrhage detection in fundus images. Reliable detection of retinal hemorrhages is important in the development of automated screening systems which can be translated into practice. Under our supervised approach, retinal color images are partitioned into nonoverlapping segments covering the entire image. Each segment, i.e., splat, contains pixels with similar color and spatial location. A set of features is extracted from each splat to describe its characteristics relative to its surroundings, employing responses from a variety of filter bank, interactions with neighboring splats, and shape and texture information. An optimal subset of splat features is selected by a filter approach followed by a wrapper approach. A classifier is trained with splat-based expert annotations and evaluated on the publicly available Messidor dataset. An area under the receiver operating characteristic curve of 0.96 is achieved at the splat level and 0.87 at the image level. While we are focused on retinal hemorrhage detection, our approach has potential to be applied to other object detection tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.