Abstract

A new high-speed encapsulation method ensnares droplets in a thin polymer film. The technique, developed by Narayanan Menon, Deepak Kumar, and Thomas P. Russell of the University of Massachusetts, Amherst, along with Joseph D. Paulsen of Syracuse University, could create a new type of tiny chemical reaction flask or be used for targeted delivery of tiny amounts of liquid cargo. In conventional liquid-encapsulation methods, a fluid layer of surfactants or particles forms a shell around the contents. The new technique involves dropping a hydrophobic liquid onto a solid, ultrathin polymer disk floating on an aqueous solution. The oil droplet’s impact pushes the disk, which is just 46–372 nm thick, down into the aqueous solution, coaxing the polymer to wrap around the oil and form a tiny bag—a process that takes less than half a second (Science 2018, DOI: 10.1126/science.aao1290). “All the droplet has to do is punch the polymer sheet

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.