Abstract

The impact of a drop onto a stagnant deep liquid pool results in jet formation in the splashing regime. The perturbations in the free surface alter the impact conditions and change the splash dynamics. We present the simulations of the water drop impact onto a deep liquid pool with a moving free surface. Occurrence of the asymmetric crater profile and bending of the central jet toward the flow direction of the free surface are observed. The inclination of the jet increased with an increase in inertia of the moving liquid surface. A secondary droplet pinched-off from the tip of the jet, and the volume of this droplet increased with an increase in the inclination of the jet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call