Abstract

Drop impingement and splashing as a function of viscosity and, to a lesser extent, temperature are examined here. The working fluid is a mixture of water and glycerin with relative mass percentages varying from 0 to 100%, which spans a viscosity range of three orders of magnitude. First, a criterion that separates “on” and “off” for splashing as a function of glycerin percentage is expressed in terms of both Weber and Reynolds numbers and its highly nonlinear behavior is a function of the change in fluid viscosity. Next, the complex splashing characteristics of a rather simple monodisperse spray injected at a pressure of 2 bars onto a flat, 2-mm-diameter aluminum cylindrical rod are examined. Spatial variations in the fraction of splashed liquid, Sauter mean diameter, splashed droplet size distribution, and splash volume fraction as a function of radial distance for these mixtures are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.