Abstract

AbstractA complete nonlinear self-similar solution that characterizes the impact of two liquid wedges symmetric about the velocity direction is obtained assuming the liquid to be ideal and incompressible, with negligible surface tension and gravity effects. Employing the integral hodograph method, analytical expressions for the complex potential and for its derivatives are derived. The boundary value problem is reduced to two integro-differential equations in terms of the velocity modulus and angle to the free surface. Numerical results are presented in a wide range of wedge angles for the free surface shapes, streamline patterns, and pressure distributions. It is found that the splash jet may cause secondary impacts. The regions with and without secondary impacts in the plane of the wedge angles are determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.