Abstract

PurposeTo determine the roles of secretory phospholipase A2-IIa (sPLA2-IIa) in the inflammatory responses of the compromised ocular surface. MethodsConjunctival impression cytology (IC) samples and tears were collected from patients with mild to severe non-Sjogren's dry eye disease (DED) and normal controls. The IC samples were analyzed for transcription of sPLA2-IIa and inflammatory cytokine/chemokine genes using quantitative real-time RT-PCR (qRT2-PCR) and pathway-focus PCR-array. The tear samples were analyzed for 13 inflammatory cytokines and chemokines with Millipore 13-Plex kit. Finally, sPLA2-IIa-treated human conjunctival epithelial cell (HCjE) cultures were analyzed with a pathway-focused PCR array. ResultsTranscription of sPLA2-IIa was significantly increased in severe DED patients as compared to those of mild DED patients and normal controls. The transcription of inflammatory cytokines (IL-1β, IL-4, IL-6, IL-17, TNF-α, IFN-γ), chemokines (IL-8, CXCL10, CXCL11, CXCL-14, CCR6, LTB) and matrix metalloproteinase 9 (MMP9) were simultaneously increased in the same IC samples of DED. Concentrations of IL-6 and IL-8 in tears were significantly higher in DED patients than those of the controls and positively correlated to DED severity scores. On the other hand, IL-2, IL-4, IL-10, IL-12 and IFN-γ were significantly lower in DED patients than those in the controls and inversely correlated to DEWS scores. Single treatment of sPLA2-IIa, IL-1β or TNF-α of HCjE cells induced minimal to no PGE2 production. When sPLA2-IIa was added to HCjE cells that were pre-treated with pro-inflammatory cytokines (TNF-α or IL-1β), significant stimulation of PGE2 production was observed, concurrent with the extensive transcriptional changes of many inflammatory cytokines/chemokines and their receptors. ConclusionsPLA2-IIa activity was elevated and not only associated with inflammatory changes in DED patient samples, but was also found to cooperate with TNF- α and IL-1β to induce inflammatory response in human conjunctival epithelial cells. Understanding the roles of sPLA2-IIa in ocular surface inflammation may lead to better strategies for the treatment of chronic inflammation associated with DED and other ocular inflammatory conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call