Abstract
We present the global distribution of fine structure infrared line emission in the Cassiopeia A supernova remnant using data from the Spitzer Space Telescope's Infrared Spectrograph. We identify emission from ejecta materials in the interior, prior to their encounter with the reverse shock, as well as from the post-shock bright ring. The global electron density increases by >~100 at the shock to ~10^4 cm^-3, providing evidence for strong radiative cooling. There is also a dramatic change in ionization state at the shock, with the fading of emission from low ionization interior species like [SiII], giving way to [SIV] and, at even further distances, high-energy X-rays from hydrogenic silicon. Two compact, crescent-shaped clumps with highly enhanced neon abundance are arranged symmetrically around the central neutron star. These neon crescents are very closely aligned with the "kick" direction of the compact object from the remnant's expansion center, tracing a new axis of explosion asymmetry. They indicate that much of the apparent macroscopic elemental mixing may arise from different compositional layers of ejecta now passing through the reverse shock along different directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.