Abstract

We report the results of spectroscopic mapping observations carried out toward protostellar outflows in the BHR71, L1157, L1448, NGC 2071, and VLA 1623 molecular regions using the Infrared Spectrograph (IRS) of the Spitzer Space Telescope. These observations, covering the 5.2 - 37 micron spectral region, provide detailed maps of the 8 lowest pure rotational lines of molecular hydrogen and of the [SI] 25.25 micron and [FeII] 26.0 micron fine structure lines. The molecular hydrogen lines, believed to account for a large fraction of the radiative cooling from warm molecular gas that has been heated by a non-dissociative shock, allow the energetics of the outflows to be elucidated. Within the regions mapped towards these 5 outflow sources, total H2 luminosities ranging from 0.02 to 0.75 L(solar) were inferred for the sum of the 8 lowest pure rotational transitions. By contrast, the much weaker [FeII] 26.0 micron fine structure transition traces faster, dissociative shocks; here, only a small fraction of the fast shock luminosity emerges as line radiation that can be detected with Spitzer/IRS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.