Abstract

Using the Spitzer/Infrared Spectrograph (IRS) low-resolution modules covering wavelengths from 5 to 35 μm, we observed 52 main-sequence A and late B type stars previously seen using Spitzer/Multiband Imaging Photometer (MIPS) to have excess infrared emission at 24 μm above that expected from the stellar photosphere. The mid-IR excess is confirmed in all cases but two. While prominent spectral features are not evident in any of the spectra, we observed a striking diversity in the overall shape of the spectral energy distributions. Most of the IRS excess spectra are consistent with single-temperature blackbody emission, suggestive of dust located at a single orbital radius—a narrow ring. Assuming the excess emission originates from a population of large blackbody grains, dust temperatures range from 70 to 324 K, with a median of 190 K corresponding to a distance of 10 AU. Thirteen stars however, have dust emission that follows a power-law distribution, F_ν = F 0λ^α, with exponent α ranging from 1.0 to 2.9. The warm dust in these systems must span a greater range of orbital locations—an extended disk. All of the stars have also been observed with Spitzer/MIPS at 70 μm, with 27 of the 50 excess sources detected (signal-to-noise ratio > 3). Most 70 μm fluxes are suggestive of a cooler, Kuiper Belt-like component that may be completely independent of the asteroid belt-like warm emission detected at the IRS wavelengths. Fourteen of 37 sources with blackbody-like fits are detected at 70 μm. The 13 objects with IRS excess emission fit by a power-law disk model, however, are all detected at 70 μm (four above, three on, and six below the extrapolated power law), suggesting that the mid-IR IRS emission and far-IR 70 μm emission may be related for these sources. Overall, the observed blackbody and power-law thermal profiles reveal debris distributed in a wide variety of radial structures that do not appear to be correlated with spectral type or stellar age. An additional 43 fainter A and late B type stars without 70 μm photometry were also observed with Spitzer/IRS; results are summarized in Appendix B.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.