Abstract

If the step-length distribution function F for a random walk {Sn, n ≧ 0} is either continuous and symmetric or belongs to the domain of attraction of a symmetric stable law, then it is clear that the symmetric form of ‘Spitzer's condition' holds, i.e. The question considered in this note is whether or not (⋆) can hold for other random walks. The answer is in the affirmative, for we show that (⋆) holds for a large class of random walks for which F is neither symmetric nor belongs to any domain of attraction; all such random walks are asymptotically symmetric, in the sense that limx→∞ {F(–x)| 1 – F(x)} = 1, but we show by an example that this is not a sufficient condition for (⋆) to hold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.