Abstract
The Wiener-Hopf factorization of a complex function arises in a variety of fields in applied mathematics such as probability, finance, insurance, queuing theory, radio engineering and fluid mechanics. The factorization fully characterizes the distribution of functionals of a random walk or a Levy process, such as the maximum, the minimum and hitting times. Here we propose a constructive procedure for the computation of the Wiener-Hopf factors, valid for both single and double barriers, based on the combined use of the Hilbert and the z-transform. The numerical implementation can be simply performed via the fast Fourier transform and the Euler summation. Given that the information in the Wiener-Hopf factors is strictly related to the distributions of the first passage times, as a concrete application in mathematical finance we consider the pricing of discretely monitored exotic options, such as lookback and barrier options, when the underlying price evolves according to an exponential Levy process. We show that the computational cost of our procedure is independent of the number of monitoring dates and the error decays exponentially with the number of grid points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.