Abstract

Spirulina platensis (SP) is a microalga with antioxidant, antidiabetic and anti-inflammatory properties. The present study explored the ability and potential mechanism(s) by which SP induced glucose lowering impact in diabetic rat model. Forty rats were allocated into four groups: control; streptozotocin (STZ)-induced diabetes (STZ, 45mg/kg b.w., intraperitoneally); SP (500mg/kg b.w., orally twice weekly for 2 months) and STZ-induced diabetes+SP group. In the STZ-induced diabetic rats, SP significantly decreased (P>0.05) serum glucose, glycated hemoglobin (HbA1c), malondialdehyde (MDA) levels and significantly increased (P>0.05) serum insulin, the activity of antioxidant enzymes and normalized their mRNA gene expression. Furthermore, SP attenuates STZ-induced upregulation of the gluconeogenic enzyme pyruvate carboxylase (PC), the pro-apoptotic Bax and caspase-3 (CASP-3), tumor necrosis factor alpha (TNF-α) gene expression. The Western blot results revealed that, SP induced downregulation of mitogen activated protein kinase pathway (MAPK) protein expression in hepatic tissues of diabetic rats. Additionally, SP reestablished the typical histological structure of the liver and pancreas of diabetic rats. Acute toxicity study further shows that SP is relatively safe. This study demonstrates that SP is rich in antioxidant compounds and has powerful glucose lowering effect through the normalization of increased hepatic PC gene expression. Interestingly, SP induced recovery of damaged hepatocytes and pancreatic β-cells via its anti-inflammatory, antioxidant and anti-apoptotic properties. The MAPK signaling cascade is a pivotal component of the proapoptotic signaling pathway induced by diabetes mellitus. MAPK activation may be dependent from ROS production, since SP which exhibited antioxidant activities did have a significant impact on MAPK activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.