Abstract

Microalgae contain a diversity of functional groups that can be used as environmental adsorbents. Spirulina platensis is a blue-green microalga that comprises protein-N, which is advantageous for use in nitrogen-containing biomass as adsorbents. This study aimed to enhance the adsorption properties of alginate hydrogels by employing Spirulina platensis. Spirulina platensis was immobilized on sodium alginate (S.P@Ca-SA) via crosslinking. The results of field-emission scanning electron microscopy, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses of the N-containing functional groups indicated that Spirulina platensis was successfully immobilized on the alginate matrix. We evaluated the effects of pH, concentration, and contact time on Pb(II) adsorption by S.P@Ca-SA. The results demonstrated that S.P@Ca-SA could effectively eliminate Pb(II) at pH 5, reaching equilibrium within 6 h, and the maximum Pb(II) sorption capacity of S.P@Ca-SA was 87.9 mg/g. Our results indicated that S.P@Ca-SA fits well with the pseudo-second-order and Freundlich models. Compared with Spirulina platensis and blank alginate beads, S.P@Ca-SA exhibited an enhanced Pb(II) adsorption efficiency. The correlation implies that the amino groups act as adsorption sites facilitating the elimination of Pb(II).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call