Abstract

AbstractThe development of antibacterial products with therapeutic properties has become a popular human health trend. Herein, for the first time, we described an effective antibacterial thermoplastic polyurethane/polycaprolacton (TPU/PCL) composite nanofibers loaded with the spirulina biomass by electrospinning method for wound care applications. The chemical, microstructural, mechanical, wettability properties and antibacterial activities of produced electrospun TPU/PCL/spirulina fibers with varied spirulina concentrations (1, 3, and 5 %, w/v to polymer solution) were investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT‐IR), UV‐VIS Spectroscopy, optical tensiometer and tensile testing machine. The SEM micrographs revealed that all resultant fibers have an average fiber diameter of 228–312 nm and a significant porosity (86‐90 %). FT‐IR spectrum pointed out no chemical bonding between spirulina and polymer matrixes. Increasing the spirulina content caused an increased swelling capacity of the nanofibers. Furthermore, TPU/PCL/spirulina samples indicated superhydrophilic property with contact angle values almost 36°, 0°, and 0°, respectively. The resultant TPU/PCL/spirulina fibers, released 36.89 ppm, 59.4 ppm, and 209.1 ppm of the spirulina after 8 hours, respectively and showing the effect of interactions between the TPU/PCL matrix and the spirulina on its release of the TPU/PCL matrix. Fluid absorption value have increased as incorporation of spirulina into the polymer matrix. All TPU/PCL/spirulina fibers and spirulina have antibacterial efficiency against E.colibacteria.TPU/PCL nanofiber with the highest amount of spirulina (5 %) has the highest tensile strength with 3.89±0.19 MPa.The electrospun TPU/PCL/spirulina nanofibers appear to be a potential candidate material for tissue engineering and wound care applications, based on our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.