Abstract

Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db)] mice, a model of DM2, and their counterpart controls [LepRdb/LepR+, (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser1177) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) β subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.

Highlights

  • In the past two decades, the number of people diagnosed with diabetes worldwide has dramatically increased (Zimmet et al, 2001)

  • 12–14 weeks-old, [B6.BKS(D)-Lepr/J] mice, an experimental model of DM2, and 14 agematched heterozygous nondiabetic mice [(db/+), from The Jackson Laboratory, Maine, USA were used in the study. db/+ and db/db mice were divided into four groups (7 mice per group): db/+ spironolactone and db/db spironolactone, which were treated for 6 weeks with the mineralocorticoid receptors (MR) antagonist spironolactone (50 mg/kg body weight/day), and db/+ vehicle and db/db vehicle, which were treated with ethanol 1% via oral per gavage (0.1 ml per 10 g of the total body weight)

  • Effects of Spironolactone Treatment on Systolic Blood Pressure, Glucose Levels, and Biochemistry Parameters Db/db mice exhibited higher plasma glucose levels compared to db/+ mice (p < 0.05)

Read more

Summary

Introduction

In the past two decades, the number of people diagnosed with diabetes worldwide has dramatically increased (Zimmet et al, 2001). Type 2 diabetes mellitus (DM2), characterized by insulin resistance and/or abnormal insulin secretion, either of which may predominate, affects 7.6 million people in Brazil, 26 million in the United States and 347 million worldwide (Zimmet et al, 2001; Manrique et al, 2014). We have recently shown that db/db mice, a DM2 experimental model, present increased expression/activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) isoforms leading to inflammation and, to vascular dysfunction (Bruder-Nascimento et al, 2015). On the other hand, reduced antioxidant enzymes expression/activity has been reported in DM2 (Bruder-Nascimento et al, 2014)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.