Abstract
The discovery of multiple resonance thermally activated delayed fluorescence (MR-TADF) materials with remarkable narrowband emission has opened a new avenue for the development of organic light-emitting diodes (OLEDs) with high color purity. However, the lack of construction strategies for purely red MR-TADF materials significantly impedes their application in full-color high-definition displays. Herein, we propose a unique and handy approach of spiro-carbon-locking and sulfur-embedding strategy to modify the parent MR-TADF framework, resulting in a red MR-TADF emitter with high color purity. The reported MR-TADF molecule (namely, FSBN) demonstrates a pure red emission with an emission maximum of 621 nm in toluene solution. The OLED with FSBN as emitter exhibits Commission Internationale de l'Éclairage (CIE) coordinates of (0.67, 0.33), which exactly matches the red standard defined by the National Television Standards Committee (NTSC). Importantly, the single-host OLED achieves a high power efficiency (PE) of up to 50.1 lm W-1, suggesting the potential for the development of low power consumption red OLEDs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.