Abstract

The spiral-type magnetic micro-machine, which is driven by a rotating magnetic field, is characterized by wireless operation for swimming. The machine has to swim under a lower Reynolds number environment, when the machine is downsized and working inside the human body. In this study, using various silicone oils whose kinematic viscosity ranged from 1 to 5/spl times/10/sup 5/ mm/sup 2//s, the swimming performance of the machine at low Reynolds number was examined. The machine composed of a cylindrical NdFeB magnet could swim in oils under condition of Re=10/sup -7/. This Reynolds number is the same as that of a micro-machine with micron size swimming in water. In addition, the machine could turn by controlling the external rotational magnetic field, and therefore the swimming direction of the machine could be controlled. Using these principles, a magnetic micromachine, which can run in a gel, was also fabricated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.