Abstract

Zn is a promising biodegradable metal owing to its moderate degradation rate and acceptable biocompatibility. However, the insufficient mechanical strength and plasticity of pure Zn limits its application in bone implants. In this study, a spiral eutectic structure is constructed in Zn–Mg–Ag alloys prepared via selective laser melting to improve their mechanical properties. Results show that the prepared Zn–Mg–Ag alloys are composed of a primary Zn matrix and a eutectic phase, which is composed of alternating α-Zn and an intermetallic compound, MgZn2. Moreover, the eutectic phase resembles a spiral and increases with Ag content in the alloys. The eutectic pinning effect hinders dislocation and hence results in dislocation accumulation. Meanwhile, the spiral structure alters the propagation direction and dissipates the propagation energy of cracks layer by layer. Consequently, a compressive strength of up to 309 ± 15 MPa and an improved strain of 27% are exhibited in Zn–3Mg–1Ag alloy. Moreover, the Zn–Mg–Ag alloys show high biocompatibility with MG-63 cells and antibacterial activity against Escherichia coli. These findings indicate the potential of spiral eutectic structures for enhancing both the mechanical strength and plasticity of biodegradable Zn alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.