Abstract

Spiral-defect chaos (SDC) in Rayleigh-Bénard convection is a well-established spatio-temporal complex pattern, which competes with stationary rolls near the onset of convection. The characteristic properties of SDC are accurately described on the basis of the standard three-dimensional Boussinesq equations. As a much simpler and attractive two-dimensional model for SDC generalized Swift-Hohenberg (SH) equations have been extensively used in the literature from the early beginning. Here, we show that the description of SDC by SH models has to be considered with care, especially regarding its long-time dynamics. For parameters used in previous SH simulations, SDC occurs only as a transient in contrast to the experiments and the rigorous solutions of the Boussinesq equations. The small-scale structure of the vorticity field at the spiral cores, which might be crucial for persistent SDC, is presumably not perfectly captured in the SH model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.