Abstract

The influence of fractal heterogeneity on a spiral wave in an excitable system is numerically studied based on the Barkley model. The heterogeneity is implemented by letting the diffusive coefficient in the heterogeneous area be different from the other area. The results show that fruitful transitions of the spiral tip trajectories are induced by the fractal heterogeneity. In particular, when the heterogeneity increases to a sufficiently high level the spiral tip trajectory always changes to a stable rotating trajectory (closed-circle tip trajectory), whatever transitions have been induced by a lower level of heterogeneity. We qualitatively ascribe the transitions to the attraction on the spiral tip exerted by the heterogeneous area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.