Abstract

Spiral waves are a basic feature of excitable systems. Although such waves have been observed in a variety of biological systems, they have not been observed in the mammalian cortex during neuronal activity. Here, we report stable rotating spiral waves in rat neocortical slices visualized by voltage-sensitive dye imaging. Tissue from the occipital cortex (visual) was sectioned parallel to cortical lamina to preserve horizontal connections in layers III-V (500-mum-thick, approximately 4 x 6 mm(2)). In such tangential slices, excitation waves propagated in two dimensions during cholinergic oscillations. Spiral waves occurred spontaneously and alternated with plane, ring, and irregular waves. The rotation rate of the spirals was approximately 10 turns per second, and the rotation was linked to the oscillations in a one-cycle- one-rotation manner. A small (<128 mum) phase singularity occurred at the center of the spirals, about which were observed oscillations of widely distributed phases. The phase singularity drifted slowly across the tissue ( approximately 1 mm/10 turns). We introduced a computational model of a cortical layer that predicted and replicated many of the features of our experimental findings. We speculate that rotating spiral waves may provide a spatial framework to organize cortical oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.