Abstract

Spiral waves occur in various types of excitable media and their dynamics determine the spatial excitation patterns. An important type of spiral wave dynamics is drift, as it can control the position of a spiral wave or eliminate a spiral wave by forcing it to the boundary. In theoretical and experimental studies of the Belousov-Zhabotinsky reaction, it was shown that the most direct way to induce the controlled drift of spiral waves is by application of an external electric field. Mathematically such drift occurs due to the onset of additional gradient terms in the Laplacian operator describing excitable media. However, this approach does not work for cardiac excitable tissue, where an external electric field does not result in gradient terms. In this paper, we propose a method of how to induce a directed linear drift of spiral waves in cardiac tissue, which can be realized as an optical feedback control in tissue where photosensitive ion channels are expressed. We illustrate our method by using the FitzHugh-Nagumo model for cardiac tissue and the generic model of photosensitive ion channels. We show that our method works for continuous and discrete light sources and can effectively move spiral waves in cardiac tissue, or eliminate them by collisions with the boundary or with another spiral wave. We finally implement our method by using a biophysically motivated photosensitive ion channel model included to the Luo-Rudy model for cardiac cells and show that the proposed feedback control also induces directed linear drift of spiral waves in a wide range of light intensities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.