Abstract
AbstractThe formation and stability of spiral magnetic structures in isotropic layered magnets have been studied under the assumption of a strong intralayer and several relatively weak interlayer exchange interactions. It was shown that all the possible magnetic structures can be derived from eigenvectors of a matrix of interlayer exchange integrals. No more than S different magnetic structures can be realized in a crystal that comprises S nonequivalent magnetic layers. Each of these structures can be presented as S nested simple spirals with an equal period, which turn about over the layers of the same type. However, not all of them are stable. In particular, in a two‐layer magnet (S = 2), there can exist two different double spirals but only one of them would be stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.