Abstract

In wire electrical discharge machining (WEDM) that can perform 2-D or 2.5-D machining, 3-D complex shape machining is also possible via the addition of a rotary axis on the NC table. Several examples of pin-shaped machining using a rotating shaft like spindle have been previously reported. Alternatively, machining using a rotary axis as an indexing device has also been reported. In these machining processes, the rotary axis is not servo controlled. Conversely, a spiral groove is formed on the outer circumference of the round bar by gripping the round bar workpiece on the rotary axis and performing machining in synchronization with the x- and rotary axes. In this machining, the gap control in electrical discharge machining is performed along the x- and rotary axes. Furthermore, complicated shape machining becomes possible by adding a 2-axis rotary axis of rotation and tilt. When the x-axis is synchronized with the rotation and tilt axes, a spiral groove with a variable groove width is formed. In this case, servo control is synchronized with the three axes, and machining proceeds. In this study, we performed spiral groove shape machining through WEDM with the addition of 1-axis or 2-axis rotary axes, consequently verifying the machining accuracy. Moreover, two types of NC program were used for machining, direct input and CAM output, and the accuracy was compared. The results revealed that the groove width was wider in the direct input program. Therefore, there was a possibility that the wire could bend during machining and tilt along the direction of the apparent widening of the groove width. Thus, it is necessary to consider the deflection of the wire in WEDM with a rotary axis, which is different from the conventional one, to realize precision machining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.