Abstract
AbstractInvestigating the formation and transformation mechanisms of spiral‐concave crystals holds significant potential for advancing innovative material design and comprehension. We examined the kinetics‐controlled nucleation and growth mechanisms of Prussian Blue crystals with spiral concave structures, and constructed a detailed crystal growth phase diagram. The spiral‐concave hexacyanoferrate (SC‐HCF) crystals, characterized by high‐density surface steps and a low stress‐strain architecture, exhibit enhanced activity due to their facile interaction with reactants. Notably, the coordination environment of SC‐HCF can be precisely modulated by the introduction of diverse metals. Utilizing X‐ray absorption fine structure spectroscopy and in situ ultraviolet‐visible spectroscopy, we elucidated the formation mechanism of SC‐HCF to Co‐HCF facilitated by oriented adsorption‐ion exchange (OA‐IE) process. Both experimental data, and density functional theory confirm that Co‐HCF possesses an optimized energy band structure, capable of adjusting the local electronic environment and enhancing the performance of the oxygen evolution reaction. This work not only elucidates the formation mechanism and coordination regulation for rich steps HCF, but also offers a novel perspective for constructing nanocrystals with intricate spiral‐concave structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.