Abstract

The flow fields and heat transfer characteristics in a parallel-plate channel with a transversely placed spiral coil insert were investigated by three-dimensional numerical simulation. The structure of multi-longitudinal-vortices (MLVs) induced by the spiral coil and the effects of MLVs on velocity and temperature fields were studied. The three-dimensional spiral coil induces a series of longitudinal vortices in the channel including leading longitudinal vortex, mainstream longitudinal vortices, near-wall longitudinal vortices, and rear central longitudinal vortex. Transport by the longitudinal vortices can increase the mass exchange between the boundary layer and the mainstream, which speeds up the heat migration from the channel walls and enhances the heat diffusion in the mainstream.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call