Abstract

A significant portion of the research on spiral bevel gear focused on contact stress and assembly flexibility (V and H check) values, while only a few studies investigated the relationship between transmission errors and rotational speed. This paper addresses and discusses an approach for 3D dynamic contact and impact analysis of spiral bevel gear drives. Dynamic models considering friction, gear clearance, and time-varying stiffness were established. Finite element software was utilized to analyze the dynamic responses of gear transmission, surface contact stress, and root bending stress of a spiral bevel gear pair. The dynamic model simulated the vibration behavior of an actual gear set under dynamic loading. The dynamic responses of the spiral bevel gear drives were obtained under differential rotational speeds of the driver and the driven resistance. The stiffness and elastic deformation of gear teeth were calculated using the finite element method with actual geometry and gear positions. After the impact analysis, the numerical simulation results of transient and steady-state transmission errors are obtained simultaneously. Using the fast Fourier transform method, frequency spectrums of the transient and steady states of the calculated transmission errors are obtained to enable the gearbox designer to avoid the resonance zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.