Abstract
Photovoltaic (PV) systems are becoming increasingly significant because they can convert solar energy into electricity. The conversion efficiency is related to the PV models’ parameters, so it is crucial to identify the parameters of PV models. Recently, various metaheuristic methods have been proposed to identify the parameters, but they cannot provide sufficient accurate and reliable performance. To address this problem, this paper proposes a spiral-based chaos chicken swarm optimization algorithm (SCCSO) including three strategies: (1) the information-sharing strategy provides the latest information of the roosters for searching global optimal solution, beneficial to improve the exploitation ability; (2) the spiral motion strategy can enable hens and chicks to move toward their corresponding targets with a spiral trajectory, improving the exploration ability; and (3) a self-adaptive-based chaotic disturbance mechanism is introduced around the global optimal solution to generate a promising solution for the worst chick at each iteration, thereby improving the convergence speed of the chicken flock. Besides, SCCSO is used for identifying different PV models such as the single-diode, the double-diode, and PV module models. Comprehensive analysis and experimental results show that SCCSO provides better robustness and accuracy than other advanced metaheuristic methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.